Aan de slagGa gratis aan de slag

Filter genes

Now that the data have been log-transformed and quantile-normalized, you need to remove the lowly expressed genes that are not relevant to the system being studied.

Deze oefening maakt deel uit van de cursus

Differential Expression Analysis with limma in R

Cursus bekijken

Oefeninstructies

The ExpressionSet object eset_norm with the normalized Populus data has been loaded in your workspace.

  • Use plotDensities to visualize the distribution of gene expression levels for each sample. Disable the legend.

  • Use rowMeans to determine which genes have a mean expression level greater than 5. Name this logical vector keep.

  • Filter the genes (i.e. rows) of the ExpressionSet object with the logical vector keep and re-visualize.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

library(limma)

# Create new ExpressionSet to store filtered data
eset <- eset_norm

# View the normalized gene expression levels
___(eset, legend = ___); abline(v = 5)

# Determine the genes with mean expression level greater than 5
keep <- ___(exprs(eset)) > ___
sum(keep)

# Filter the genes
eset <- eset[___]
___(eset, legend = ___)
Code bewerken en uitvoeren