LoslegenKostenlos loslegen

Interpreting multivariate regression parameters

Your Bayesian model explored the dependence of typical trail volume on weekday status \(X\)i and temperature \(Z\)i: \(m\)i \(= a + b X\)i \(+ c Z\)i. A summary() of your RJAGS model simulation provides posterior mean estimates of parameters \(a\), \(b\), and \(c\):

> summary(rail_sim_2)
        Mean      SD Naive SE Time-series SE
a     36.592 60.6238 0.606238        4.19442
b[1]   0.000  0.0000 0.000000        0.00000
b[2] -49.610 23.4930 0.234930        0.55520
c      5.417  0.8029 0.008029        0.05849
s    103.434  7.9418 0.079418        0.11032

For example, the posterior mean of \(c\) indicates that for both weekends and weekdays, typical rail volume increases by ~5.4 users for every 1 degree increase in temperature. Which of the following interpretations of \(b\) (represented here by b[2]) is the most accurate?

Diese Übung ist Teil des Kurses

Bayesian Modeling with RJAGS

Kurs anzeigen

Interaktive Übung

Setze die Theorie in einer unserer interaktiven Übungen in die Praxis um

Übung starten