LoslegenKostenlos loslegen

RJAGS simulation for Poisson regression

In the previous video we engineered a Poisson regression model of volume \(Y\)i by weekday status \(X\)i and temperature \(Z\)i:

  • likelihood: \(Y\)i \(\sim Pois(l\)i) where \(log(l\)i\() = a + b X\)i \(+ c Z\)i
  • priors: \(a \sim N(0, 200^2)\), \(b \sim N(0, 2^2)\), and \(c \sim N(0, 2^2)\)

Combining your insights from the observed RailTrail data and the priors stated here, you will define, compile, and simulate a posterior model of this relationship using RJAGS. To challenge yourself in this last RJAGS simulation of the course, you'll be provided with less helpful code than usual!

The RailTrail data are in your work space.

Diese Übung ist Teil des Kurses

Bayesian Modeling with RJAGS

Kurs anzeigen

Interaktive Übung

Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.

# DEFINE the model    
poisson_model <- 
Code bearbeiten und ausführen