RJAGS simulation for multivariate regression
Consider the following Bayesian model of volume \(Y\)i by weekday status \(X\)i and temperature \(Z\)i:
- likelihood: \(Y\)i \(\sim N(m\)i, \(s^2)\) where \(m\)i \(= a + b X\)i \(+ c Z\)i .
- priors: \(a \sim N(0, 200^2)\), \(b \sim N(0, 200^2)\), \(c \sim N(0, 20^2)\), \(s \sim Unif(0, 200)\)
Your previous exploration of the relationship between volume
, weekday
, and hightemp
in the RailTrail
data provided some insight into this relationship. You will combine this with insight from the priors to develop a posterior model of this relationship using RJAGS. The RailTrail
data are in your work space.
Diese Übung ist Teil des Kurses
Bayesian Modeling with RJAGS
Interaktive Übung
Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.
# DEFINE the model
rail_model_2 <-