RJAGS simulation for multivariate regression
Consider the following Bayesian model of volume \(Y\)i by weekday status \(X\)i and temperature \(Z\)i:
- likelihood: \(Y\)i \(\sim N(m\)i, \(s^2)\) where \(m\)i \(= a + b X\)i \(+ c Z\)i .
- priors: \(a \sim N(0, 200^2)\), \(b \sim N(0, 200^2)\), \(c \sim N(0, 20^2)\), \(s \sim Unif(0, 200)\)
Your previous exploration of the relationship between volume, weekday, and hightemp in the RailTrail data provided some insight into this relationship. You will combine this with insight from the priors to develop a posterior model of this relationship using RJAGS. The RailTrail data are in your work space.
Questo esercizio fa parte del corso
Bayesian Modeling with RJAGS
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# DEFINE the model
rail_model_2 <-