IniziaInizia gratis

Define, compile, & simulate the regression model

Upon observing the relationship between weight \(Y\)i and height \(X\)i for the 507 subjects \(i\) in the bdims data set, you can update your posterior model of this relationship. To build your posterior, you must combine your insights from the likelihood and priors:

  • likelihood: \(Y\)i \(\sim N(m\)i, \(s^2)\) where \(m\)i \(= a + b X\)i
  • priors: \(a \sim N(0, 200^2)\), \(b \sim N(1, 0.5^2)\) and \(s \sim Unif(0, 20)\)

In this series of exercises, you'll define, compile, and simulate your Bayesian regression posterior. The bdims data are in your work space.

Questo esercizio fa parte del corso

Bayesian Modeling with RJAGS

Visualizza il corso

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# DEFINE the model    
weight_model <- ___
Modifica ed esegui il codice