LoslegenKostenlos loslegen

Standardabweichung versus Varianz

Lass uns über den Unterschied zwischen Varianz und Standardabweichung sprechen. Aus dem Video weißt du bereits, dass die Standardabweichung \(\sigma\) einfach die Quadratwurzel der Varianz ist. Beide Maße werden in der Praxis genutzt, um die Volatilität von Märkten oder Aktien zu berechnen. Warum solltest du das eine oder das andere verwenden?

Bei der Varianzberechnung quadrieren wir die Gewichte und die Varianzen. Durch dieses Quadrieren ist die Varianz nicht mehr in derselben Einheit wie die ursprünglichen Daten. Wenn wir die Wurzel der Varianz ziehen, wird die Standardabweichung wieder in die ursprüngliche Maßeinheit zurückgeführt und ist dadurch viel leichter zu interpretieren.

Berechnen wir die Standardabweichung. Verfügbar sind die weights und die cov_matrix aus der vorherigen Übung.

Diese Übung ist Teil des Kurses

Einführung in die Portfolioanalyse mit Python

Kurs anzeigen

Anleitung zur Übung

  • Erstelle die Berechnung der Portfoliovarianz mit weights und der cov_matrix erneut. Ziehe diesmal die Quadratwurzel der gesamten Berechnung, um stattdessen die Standardabweichung zu erhalten.
  • Gib die Standardabweichung aus – so wie wir es bei der Portfoliovarianz gemacht haben.

Interaktive Übung

Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.

# Calculate the standard deviation by taking the square root
port_standard_dev = ____.____(np.dot(____.____, np.dot(____, ____)))

# Print the results 
print(str(np.round(____, 4) * 100) + '%')
Code bearbeiten und ausführen