Test for differential expression for group-means
Now that you've specified the design matrix and the contrasts matrix, you can test for differential expression.
Diese Übung ist Teil des Kurses
Differential Expression Analysis with limma in R
Anleitung zur Übung
The ExpressionSet object eset
with the leukemia data, the design matrix (design
), and the contrasts matrix (cm
) have been loaded in your workspace.
Fit the model coefficients with
lmFit
.Fit the contrasts with
contrasts.fit
.Calculate the t-statistics with
eBayes
.Summarize the results with
decideTests
. You don't need to subsetfit2
like you did in the treatment-contrasts parametrization because there is no intercept term in the group-means model.
Interaktive Übung
Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.
# Load package
library(limma)
# Fit the model
fit <- ___(eset, ___)
# Fit the contrasts
fit2 <- ___(fit, contrasts = ___)
# Calculate the t-statistics for the contrasts
fit2 <- ___(fit2)
# Summarize results
results <- ___(fit2)
summary(results)