ComenzarEmpieza gratis

Create a boxplot with an ExpressionSet object

Now that you've combined all the experimental data into one ExpressionSet object, it is more convenient to subset the features and samples. In this exercise, you'll once again create a boxplot to visualize one gene, but this time also subset the samples that are included in the plot.

Este ejercicio forma parte del curso

Differential Expression Analysis with limma in R

Ver curso

Instrucciones del ejercicio

The ExpressionSet eset has been loaded in your workspace.

  • Subset eset to only the first 10 samples (columns).

  • Create a boxplot of the 1000th gene (i.e. row) in eset_sub using the accessor functions exprs, pData, and fData.

Ejercicio interactivo práctico

Prueba este ejercicio completando el código de muestra.

# Subset to only include the first 10 samples (columns)
eset_sub <- eset[___]

# Check the dimensions of the subset
dim(eset_sub)

# Create a boxplot of the 1000th gene in eset_sub
boxplot(___(eset_sub)[___, ] ~ ___(eset_sub)[, "Disease"],
        main = ___(eset_sub)[___, "symbol"])
Editar y ejecutar código