CommencerCommencer gratuitement

Estimate the autocorrelation function (ACF) for a moving average

Now that you've simulated some MA data using the arima.sim() command, you may want to estimate the autocorrelation functions (ACF) for your data. As in the previous chapter, you can use the acf() command to generate plots of the autocorrelation in your MA data.

In this exercise, you'll use acf() to estimate the ACF for three simulated MA series, x, y, and z. These series have slope parameters of 0.4, 0.9, and -0.75, respectively, and are shown in the figure on the right.

Cet exercice fait partie du cours

Time Series Analysis in R

Afficher le cours

Instructions

  • Use three calls to acf() to estimate the autocorrelation functions for x, y, and z, respectively.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Calculate ACF for x
acf(___)

# Calculate ACF for y


# Calculate ACF for z

Modifier et exécuter le code