ComenzarEmpieza gratis

Dealing with multicollinearity

In the previous exercise, you found that multicollinearity exists in your model by reviewing the VIF values of independent variables. Follow the steps below to remove multicollinearity:

  • Step 1: Calculate VIF of the model
  • Step 2: Identify if any variable has VIF greater than or equal to 5
    • Step 2a: Remove the variable from the model if it has a VIF greater than or equal to 5
    • Step 2b: If there are multiple variables with VIF greater than 5, only remove the variable with the highest VIF
  • Step 3: Repeat steps 1 and 2 until VIF of all variables is less than 5

Este ejercicio forma parte del curso

HR Analytics: Predicting Employee Churn in R

Ver curso

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Remove level
model_1 <- glm(turnover ~ . - ___, family = "binomial", 
               data = train_set_multi)

# Check multicollinearity again
___

# Which variable has the highest VIF value?
highest <- ___
Editar y ejecutar código