Calculating Information Value
So far you have combined data from multiple sources and created new variables to derive insights from data. Do you think all these variables can explain turnover?
Information Value (IV) helps in measuring and ranking the variables on the basis of the predictive power of each variable. You can use Information Value (IV) to drop the variables which have very low predictive power.
Este ejercicio forma parte del curso
HR Analytics: Predicting Employee Churn in R
Instrucciones del ejercicio
- Load the
Informationpackage. - Use the
emp_finaldataset from the previous exercise to find information value of all the variables in the dataset. - Print Information Value (IV) of each variable.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# Load Information package
___
# Compute Information Value
IV <- create_infotables(data = ___, y = ___)
# Print Information Value
___