ComenzarEmpieza gratis

Creating turnover risk buckets

Now that you have predicted the probability of turnover for each active employee, you will classify them into different risk bucket as mentioned below:

  • no-risk, if 0 <= fit <= 0.5
  • low-risk, if 0.5 < fit <= 0.6
  • medium-risk, if 0.6 < fit <= 0.8
  • high-risk, if 0.8 < fit <= 1

You will use the cut() function instead of multiple ifelse() statements to create the risk buckets.

Risk buckets help you in creating appropriate interventions and retention plans.

Este ejercicio forma parte del curso

HR Analytics: Predicting Employee Churn in R

Ver curso

Instrucciones del ejercicio

  • Classify the employees in risk buckets based on the fit column in emp_risk as per the conditions mentioned above.
  • Print the number of employees in each risk bucket.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Create turnover risk buckets
emp_risk_bucket <- emp_risk %>% 
  ___(risk_bucket = ___(fit, breaks = c(0, 0.5, 0.6, 0.8, 1), 
                           labels = c("no-risk", "low-risk", 
                                      "medium-risk", "high-risk")))

# Count employees in each risk bucket
emp_risk_bucket %>% 
  ___(risk_bucket)
Editar y ejecutar código