ComeçarComece de graça

Detecting multicollinearity

In this exercise, you will check for multicollinearity among all variables by using the Variance Inflation Factor (VIF). You can calculate the VIF using the vif() function from the car package.

The VIF values are available in the GVIF column of the output and are usually printed in the exponential format. If you are not familiar with this format, you can use the format() function:

sample_vif_value <- 2.213e+10
format(sample_vif_value, scientific = FALSE)

"22130000000"

Este exercício faz parte do curso

HR Analytics: Predicting Employee Churn in R

Ver curso

Instruções do exercício

  • Load the car package.
  • Check for multicollinearity in the model (multi_log) you built in a previous exercise.
  • Which variable has the highest VIF? Assign the variable name as a string to highest.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Load the car package
___

# Model you built in a previous exercise
multi_log <- glm(turnover ~ ., family = "binomial", data = train_set_multi)

# Check for multicollinearity
___

# Which variable has the highest VIF?
highest <- ___
Editar e executar o código