Calculating Information Value
So far you have combined data from multiple sources and created new variables to derive insights from data. Do you think all these variables can explain turnover?
Information Value (IV) helps in measuring and ranking the variables on the basis of the predictive power of each variable. You can use Information Value (IV) to drop the variables which have very low predictive power.
Este exercício faz parte do curso
HR Analytics: Predicting Employee Churn in R
Instruções do exercício
- Load the
Informationpackage. - Use the
emp_finaldataset from the previous exercise to find information value of all the variables in the dataset. - Print Information Value (IV) of each variable.
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# Load Information package
___
# Compute Information Value
IV <- create_infotables(data = ___, y = ___)
# Print Information Value
___