ComeçarComece de graça

RJAGS simulation for multivariate regression

Consider the following Bayesian model of volume \(Y\)i by weekday status \(X\)i and temperature \(Z\)i:

  • likelihood: \(Y\)i \(\sim N(m\)i, \(s^2)\) where \(m\)i \(= a + b X\)i \(+ c Z\)i .
  • priors: \(a \sim N(0, 200^2)\), \(b \sim N(0, 200^2)\), \(c \sim N(0, 20^2)\), \(s \sim Unif(0, 200)\)

Your previous exploration of the relationship between volume, weekday, and hightemp in the RailTrail data provided some insight into this relationship. You will combine this with insight from the priors to develop a posterior model of this relationship using RJAGS. The RailTrail data are in your work space.

Este exercício faz parte do curso

Bayesian Modeling with RJAGS

Ver curso

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# DEFINE the model    
rail_model_2 <- 
Editar e executar o código