RJAGS simulation for multivariate regression
Consider the following Bayesian model of volume \(Y\)i by weekday status \(X\)i and temperature \(Z\)i:
- likelihood: \(Y\)i \(\sim N(m\)i, \(s^2)\) where \(m\)i \(= a + b X\)i \(+ c Z\)i .
- priors: \(a \sim N(0, 200^2)\), \(b \sim N(0, 200^2)\), \(c \sim N(0, 20^2)\), \(s \sim Unif(0, 200)\)
Your previous exploration of the relationship between volume
, weekday
, and hightemp
in the RailTrail
data provided some insight into this relationship. You will combine this with insight from the priors to develop a posterior model of this relationship using RJAGS. The RailTrail
data are in your work space.
Este exercício faz parte do curso
Bayesian Modeling with RJAGS
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# DEFINE the model
rail_model_2 <-