Markov chain density plots
Whereas a trace plot captures a Markov chain's longitudinal behavior, a density plot illustrates the final distribution of the chain values. In turn, the density plot provides an approximation of the posterior model. You will construct and examine density plots of the \(m\) Markov chain below. The mcmc.list
object sleep_sim
and sleep_chains
data frame are in your workspace:
sleep_sim <- coda.samples(model = sleep_jags, variable.names = c("m", "s"), n.iter = 10000)
sleep_chains <- data.frame(sleep_sim[[1]], iter = 1:10000)
Este exercício faz parte do curso
Bayesian Modeling with RJAGS
Instruções do exercício
Apply
plot()
tosleep_sim
withtrace = FALSE
to construct density plots for the \(m\) and \(s\) chains.Apply
ggplot()
tosleep_chains
to re-construct a density plot of the \(m\) chain.
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# Use plot() to construct density plots of the m and s chains
# Use ggplot() to construct a density plot of the m chain
ggplot(___, aes(x = ___)) +
___()