ComeçarComece de graça

Markov chain density plots

Whereas a trace plot captures a Markov chain's longitudinal behavior, a density plot illustrates the final distribution of the chain values. In turn, the density plot provides an approximation of the posterior model. You will construct and examine density plots of the \(m\) Markov chain below. The mcmc.list object sleep_sim and sleep_chains data frame are in your workspace:

sleep_sim <- coda.samples(model = sleep_jags, variable.names = c("m", "s"), n.iter = 10000)
sleep_chains <- data.frame(sleep_sim[[1]], iter = 1:10000)

Este exercício faz parte do curso

Bayesian Modeling with RJAGS

Ver curso

Instruções do exercício

  • Apply plot() to sleep_sim with trace = FALSE to construct density plots for the \(m\) and \(s\) chains.

  • Apply ggplot() to sleep_chains to re-construct a density plot of the \(m\) chain.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Use plot() to construct density plots of the m and s chains


# Use ggplot() to construct a density plot of the m chain
ggplot(___, aes(x = ___)) + 
    ___()
Editar e executar o código