ComeçarComece de graça

Define, compile, & simulate the regression model

Upon observing the relationship between weight \(Y\)i and height \(X\)i for the 507 subjects \(i\) in the bdims data set, you can update your posterior model of this relationship. To build your posterior, you must combine your insights from the likelihood and priors:

  • likelihood: \(Y\)i \(\sim N(m\)i, \(s^2)\) where \(m\)i \(= a + b X\)i
  • priors: \(a \sim N(0, 200^2)\), \(b \sim N(1, 0.5^2)\) and \(s \sim Unif(0, 20)\)

In this series of exercises, you'll define, compile, and simulate your Bayesian regression posterior. The bdims data are in your work space.

Este exercício faz parte do curso

Bayesian Modeling with RJAGS

Ver curso

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# DEFINE the model    
weight_model <- ___
Editar e executar o código