Define, compile, & simulate the regression model
Upon observing the relationship between weight \(Y\)i and height \(X\)i for the 507 subjects \(i\) in the bdims
data set, you can update your posterior model of this relationship. To build your posterior, you must combine your insights from the likelihood and priors:
- likelihood: \(Y\)i \(\sim N(m\)i, \(s^2)\) where \(m\)i \(= a + b X\)i
- priors: \(a \sim N(0, 200^2)\), \(b \sim N(1, 0.5^2)\) and \(s \sim Unif(0, 20)\)
In this series of exercises, you'll define, compile, and simulate your Bayesian regression posterior. The bdims
data are in your work space.
Este exercício faz parte do curso
Bayesian Modeling with RJAGS
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# DEFINE the model
weight_model <- ___