Interpreting multivariate regression parameters
Your Bayesian model explored the dependence of typical trail volume on weekday status \(X\)i and temperature \(Z\)i: \(m\)i \(= a + b X\)i \(+ c Z\)i. A summary() of your RJAGS model simulation provides posterior mean estimates of parameters \(a\), \(b\), and \(c\):
> summary(rail_sim_2)
Mean SD Naive SE Time-series SE
a 36.592 60.6238 0.606238 4.19442
b[1] 0.000 0.0000 0.000000 0.00000
b[2] -49.610 23.4930 0.234930 0.55520
c 5.417 0.8029 0.008029 0.05849
s 103.434 7.9418 0.079418 0.11032
For example, the posterior mean of \(c\) indicates that for both weekends and weekdays, typical rail volume increases by ~5.4 users for every 1 degree increase in temperature. Which of the following interpretations of \(b\) (represented here by b[2]) is the most accurate?
Deze oefening maakt deel uit van de cursus
Bayesian Modeling with RJAGS
Praktische interactieve oefening
Zet theorie om in actie met een van onze interactieve oefeningen.
Begin met trainen