Markov chain density plots
Whereas a trace plot captures a Markov chain's longitudinal behavior, a density plot illustrates the final distribution of the chain values. In turn, the density plot provides an approximation of the posterior model. You will construct and examine density plots of the \(m\) Markov chain below. The mcmc.list object sleep_sim and sleep_chains data frame are in your workspace:
sleep_sim <- coda.samples(model = sleep_jags, variable.names = c("m", "s"), n.iter = 10000)
sleep_chains <- data.frame(sleep_sim[[1]], iter = 1:10000)
Deze oefening maakt deel uit van de cursus
Bayesian Modeling with RJAGS
Oefeninstructies
Apply
plot()tosleep_simwithtrace = FALSEto construct density plots for the \(m\) and \(s\) chains.Apply
ggplot()tosleep_chainsto re-construct a density plot of the \(m\) chain.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Use plot() to construct density plots of the m and s chains
# Use ggplot() to construct a density plot of the m chain
ggplot(___, aes(x = ___)) +
___()