Updating the posterior
The posterior model of your underlying election support \(p\) is informed by both the prior model of \(p\) and polling data \(X\). Run the script to the right to remind yourself of the posterior that evolved from your original prior (Beta(45, 55)) and original poll data (\(X = 6\) of \(n = 10\) polled voters support you). The defined vote_model is in your workspace.
In a 3-step exercise, you will explore how using a different prior model or observing new data (or a combination of the two!) might impact the posterior.
Deze oefening maakt deel uit van de cursus
Bayesian Modeling with RJAGS
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# COMPILE the model
vote_jags <- jags.model(textConnection(vote_model),
data = list(a = 45, b = 55, X = 6, n = 10),
inits = list(.RNG.name = "base::Wichmann-Hill", .RNG.seed = 100))
# SIMULATE the posterior
vote_sim <- coda.samples(model = vote_jags, variable.names = c("p"), n.iter = 10000)
# PLOT the posterior
plot(vote_sim, trace = FALSE, xlim = c(0,1), ylim = c(0,18))