RJAGS simulation for multivariate regression
Consider the following Bayesian model of volume \(Y\)i by weekday status \(X\)i and temperature \(Z\)i:
- likelihood: \(Y\)i \(\sim N(m\)i, \(s^2)\) where \(m\)i \(= a + b X\)i \(+ c Z\)i .
- priors: \(a \sim N(0, 200^2)\), \(b \sim N(0, 200^2)\), \(c \sim N(0, 20^2)\), \(s \sim Unif(0, 200)\)
Your previous exploration of the relationship between volume, weekday, and hightemp in the RailTrail data provided some insight into this relationship. You will combine this with insight from the priors to develop a posterior model of this relationship using RJAGS. The RailTrail data are in your work space.
Deze oefening maakt deel uit van de cursus
Bayesian Modeling with RJAGS
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# DEFINE the model
rail_model_2 <-