Aan de slagGa gratis aan de slag

Define, compile, & simulate the regression model

Upon observing the relationship between weight \(Y\)i and height \(X\)i for the 507 subjects \(i\) in the bdims data set, you can update your posterior model of this relationship. To build your posterior, you must combine your insights from the likelihood and priors:

  • likelihood: \(Y\)i \(\sim N(m\)i, \(s^2)\) where \(m\)i \(= a + b X\)i
  • priors: \(a \sim N(0, 200^2)\), \(b \sim N(1, 0.5^2)\) and \(s \sim Unif(0, 20)\)

In this series of exercises, you'll define, compile, and simulate your Bayesian regression posterior. The bdims data are in your work space.

Deze oefening maakt deel uit van de cursus

Bayesian Modeling with RJAGS

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# DEFINE the model    
weight_model <- ___
Code bewerken en uitvoeren