Define, compile, & simulate the regression model
Upon observing the relationship between weight \(Y\)i and height \(X\)i for the 507 subjects \(i\) in the bdims data set, you can update your posterior model of this relationship. To build your posterior, you must combine your insights from the likelihood and priors:
- likelihood: \(Y\)i \(\sim N(m\)i, \(s^2)\) where \(m\)i \(= a + b X\)i
- priors: \(a \sim N(0, 200^2)\), \(b \sim N(1, 0.5^2)\) and \(s \sim Unif(0, 20)\)
In this series of exercises, you'll define, compile, and simulate your Bayesian regression posterior. The bdims data are in your work space.
Deze oefening maakt deel uit van de cursus
Bayesian Modeling with RJAGS
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# DEFINE the model
weight_model <- ___