Tests de sommes de rangs
Une autre famille de tests d’hypothèses non paramétriques s’appelle les tests de sommes de rangs. Les rangs correspondent aux positions de valeurs numériques de la plus petite à la plus grande. Imaginez-les comme des places lors d’une course : la personne au temps le plus rapide (le plus petit) est rang 1, la deuxième plus rapide est rang 2, et ainsi de suite.
En calculant sur les rangs des données plutôt que sur leurs valeurs exactes, vous évitez de faire des hypothèses sur la distribution de la statistique de test. C’est plus robuste, un peu comme la médiane l’est par rapport à la moyenne.
Deux tests courants fondés sur les rangs sont le test de Wilcoxon-Mann-Whitney, analogue non paramétrique du t-test, et le test de Kruskal-Wallis, analogue non paramétrique de l’ANOVA.
late_shipments est disponible.
Cet exercice fait partie du cours
Tests d’hypothèses en R
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Run a Wilcoxon-Mann-Whitney test on weight_kilograms vs. late
test_results <- ___
# See the result
test_results