ComenzarEmpieza gratis

Interpreting multivariate regression parameters

Your Bayesian model explored the dependence of typical trail volume on weekday status \(X\)i and temperature \(Z\)i: \(m\)i \(= a + b X\)i \(+ c Z\)i. A summary() of your RJAGS model simulation provides posterior mean estimates of parameters \(a\), \(b\), and \(c\):

> summary(rail_sim_2)
        Mean      SD Naive SE Time-series SE
a     36.592 60.6238 0.606238        4.19442
b[1]   0.000  0.0000 0.000000        0.00000
b[2] -49.610 23.4930 0.234930        0.55520
c      5.417  0.8029 0.008029        0.05849
s    103.434  7.9418 0.079418        0.11032

For example, the posterior mean of \(c\) indicates that for both weekends and weekdays, typical rail volume increases by ~5.4 users for every 1 degree increase in temperature. Which of the following interpretations of \(b\) (represented here by b[2]) is the most accurate?

Este ejercicio forma parte del curso

Bayesian Modeling with RJAGS

Ver curso

Ejercicio interactivo práctico

Pon en práctica la teoría con uno de nuestros ejercicios interactivos

Empezar ejercicio