ComenzarEmpieza gratis

Markov chain density plots

Whereas a trace plot captures a Markov chain's longitudinal behavior, a density plot illustrates the final distribution of the chain values. In turn, the density plot provides an approximation of the posterior model. You will construct and examine density plots of the \(m\) Markov chain below. The mcmc.list object sleep_sim and sleep_chains data frame are in your workspace:

sleep_sim <- coda.samples(model = sleep_jags, variable.names = c("m", "s"), n.iter = 10000)
sleep_chains <- data.frame(sleep_sim[[1]], iter = 1:10000)

Este ejercicio forma parte del curso

Bayesian Modeling with RJAGS

Ver curso

Instrucciones del ejercicio

  • Apply plot() to sleep_sim with trace = FALSE to construct density plots for the \(m\) and \(s\) chains.

  • Apply ggplot() to sleep_chains to re-construct a density plot of the \(m\) chain.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Use plot() to construct density plots of the m and s chains


# Use ggplot() to construct a density plot of the m chain
ggplot(___, aes(x = ___)) + 
    ___()
Editar y ejecutar código