ComenzarEmpieza gratis

RJAGS simulation for multivariate regression

Consider the following Bayesian model of volume \(Y\)i by weekday status \(X\)i and temperature \(Z\)i:

  • likelihood: \(Y\)i \(\sim N(m\)i, \(s^2)\) where \(m\)i \(= a + b X\)i \(+ c Z\)i .
  • priors: \(a \sim N(0, 200^2)\), \(b \sim N(0, 200^2)\), \(c \sim N(0, 20^2)\), \(s \sim Unif(0, 200)\)

Your previous exploration of the relationship between volume, weekday, and hightemp in the RailTrail data provided some insight into this relationship. You will combine this with insight from the priors to develop a posterior model of this relationship using RJAGS. The RailTrail data are in your work space.

Este ejercicio forma parte del curso

Bayesian Modeling with RJAGS

Ver curso

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# DEFINE the model    
rail_model_2 <- 
Editar y ejecutar código