The effect of multicollinearity
Using the crab
dataset you will analyze the effects of multicollinearity. Recall that multicollinearity can have the following effects:
- Coefficient is not significant, but variable is highly correlated with \(y\).
- Adding/removing a variable significantly changes coefficients.
- Not logical sign of the coefficient.
- Variables have high pairwise correlation.
Diese Übung ist Teil des Kurses
Generalized Linear Models in Python
Anleitung zur Übung
- Import necessary functions from
statsmodels
library for GLMs. - Fit a multivariate logistic regression model with
weight
andwidth
as explanatory variables andy
as the response. - View model results using
print()
function.
Interaktive Übung
Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.
# Import statsmodels
import ____.____ as sm
from ____.____.____ import glm
# Define model formula
formula = '____ ~ ____'
# Fit GLM
model = glm(____, ____ = ____, ____ = sm.____.____).____
# Print model summary
____(____.____)