LoslegenKostenlos loslegen

Rate of change in probability

For the wells dataset you have already fitted a logistic regression model with the model formula switch ~ distance100 obtaining the following fit $$ log(\frac{\mu}{1-\mu}) = 0.6060 - 0.6219\times distance100 $$

In this exercise you will use that model to understand how the estimated probability changes at a certain value of distance100, say 1.5 as depicted in the figure below.

Recall the formulas for the inverse-logit (probability)

$$ \mu = \frac{exp(\beta_0+\beta_1x_1)}{1+exp(\beta_0+\beta_1x_1)} $$

and the slope of the tangent line of the model fit at point \(x\):

$$ \beta*\mu(1-\mu) $$

Dataset wells and the model wells_GLM are loaded in the workspace.

Diese Übung ist Teil des Kurses

Generalized Linear Models in Python

Kurs anzeigen

Interaktive Übung

Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.

# Define x at 1.5
x = ____

# Extract intercept & slope from the fitted model
intercept, slope = ____.____
Code bearbeiten und ausführen