LoslegenKostenlos loslegen

Visualize correlation matrices

The correlation matrix generated in the previous exercise can be plotted using a heatmap. To do so, you can leverage the heatmap() function from the seaborn library which contains several arguments to tailor the look of your heatmap.

df_corr = df.corr()

sns.heatmap(df_corr)
plt.xticks(rotation=90)
plt.yticks(rotation=0) 

You can use the .xticks() and .yticks() methods to rotate the axis labels so they don't overlap.

To learn about the arguments to the heatmap() function, refer to this page.

Diese Übung ist Teil des Kurses

Visualizing Time Series Data in Python

Kurs anzeigen

Anleitung zur Übung

  • Import seaborn as sns.
  • Compute the correlation between all columns in the meat DataFrame using the Spearman method and assign the results to a new variable called corr_meat.
  • Plot the heatmap of corr_meat.

Interaktive Übung

Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.

# Import seaborn library
import ____ as ____

# Get correlation matrix of the meat DataFrame: corr_meat
____ = ____.____(method=____)

# Customize the heatmap of the corr_meat correlation matrix
____(corr_meat,
            annot=True,
            linewidths=0.4,
            annot_kws={"size": 10})

plt.xticks(rotation=90)
plt.yticks(rotation=0) 
plt.show()
Code bearbeiten und ausführen