The MSR portfolio
The maximum Sharpe ratio, or MSR portfolio, which lies at the apex of the efficient frontier, can be constructed by looking for the portfolio with the highest Sharpe ratio.
Unfortunately, the MSR portfolio is often quite erratic. Even though the portfolio had a high historical Sharpe ratio, it doesn't guarantee that the portfolio will have a good Sharpe ratio moving forward.
Diese Übung ist Teil des Kurses
Introduction to Portfolio Risk Management in Python
Anleitung zur Übung
- Sort
RandomPortfolioswith the highest Sharpe value, ranking in descending order. - Multiply
MSR_weights_arrayacross the rows ofStockReturnsto get weighted stock returns. - Finally, review the plot of cumulative returns over time.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Sort the portfolios by Sharpe ratio
sorted_portfolios = RandomPortfolios.____(by=['Sharpe'], ascending=____)
# Extract the corresponding weights
MSR_weights = sorted_portfolios.iloc[0, 0:numstocks]
# Cast the MSR weights as a numpy array
MSR_weights_array = np.array(MSR_weights)
# Calculate the MSR portfolio returns
StockReturns['Portfolio_MSR'] = StockReturns.iloc[:, 0:numstocks].mul(____, axis=1).sum(axis=1)
# Plot the cumulative returns
cumulative_returns_plot(['Portfolio_EW', 'Portfolio_MCap', 'Portfolio_MSR'])