The recursive nature of the GARCH variance
Under the GARCH(1,1) equation the predicted variance is determined by the squared surprise in return and the previous variance prediction:

You can implement this using a loop (refer to the slides if you don't remember the loop structure from the video).
Let's do this for the S&P 500 daily returns. The variables omega, alpha, beta, nobs, e2 and predvar are already loaded in your R environment.
Diese Übung ist Teil des Kurses
GARCH Models in R
Anleitung zur Übung
- Compute the predicted variances.
- Use
predvarto define the series of predicted annualized volatilityann_predvol. - Plot the predicted annualized volatility for the years 2008-2009 to see the dynamics around the financial crisis.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Compute the predicted variances
predvar[1] <- var(sp500ret)
for(t in 2:nobs){
predvar[t] <- ___ + ___ * e2[t-1] + ___ * predvar[___]
}
# Create annualized predicted volatility
ann_predvol <- xts(___(252) * sqrt(___), order.by = time(sp500ret))
# Plot the annual predicted volatility in 2008 and 2009
___(___["2008::2009"], main = "Ann. S&P 500 vol in 2008-2009")