Parameter bounds and impact on forecasts
Let's take again the flexible GARCH model specification for which the estimated coefficients are printed in the console. Now assume that you believe that the GARCH parameter \(\alpha\) should be between 0.05 and 0.1, while the \(\beta\) parameter is between 0.8 and 0.95. You are asked here to re-estimate the model by imposing those bounds and see the effect on the volatility forecasts for the next ten days obtained using ugarchforecast
.
Diese Übung ist Teil des Kurses
GARCH Models in R
Anleitung zur Übung
- Impose the
c(0.05, 0.2)
andc(0.8, 0.95)
bounds onalpha1
andbeta1
. - Estimate the bounded model on the EURUSD returns.
- Note how coefficients have changed.
- Compare in a table the volatility predictions for the next 10 days using the unrestricted and restricted models.
Interaktive Übung
Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.
# Define bflexgarchspec as the bound constrained version
bflexgarchspec <- flexgarchspec
___(bflexgarchspec) <- list(___ = ___, ___ = ___)
# Estimate the bound constrained model
bflexgarchfit <- ugarchfit(data = EURUSDret, ___ = ___)
# Inspect coefficients
___(___)
# Compare forecasts for the next ten days
cbind(sigma(ugarchforecast(flexgarchfit, n.ahead = ___)),
sigma(ugarchforecast(bflexgarchfit, n.ahead = ___)))