ComeçarComece de graça

Make forecast with GARCH models

Previously you have implemented a basic GARCH(1,1) model with the Python arch package. In this exercise, you will practice making a basic volatility forecast.

You will again use the historical returns of S&P 500 time series. First define and fit a GARCH(1,1) model with all available observations, then call .forecast() to make a prediction. By default it produces a 1-step ahead estimate. You can use horizon = n to specify longer forward periods.

The arch package has been preloaded for you.

Este exercício faz parte do curso

GARCH Models in Python

Ver curso

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Specify a GARCH(1,1) model
basic_gm = ____(sp_data['Return'], p = 1, q = 1, 
                      mean = 'constant', vol = 'GARCH', dist = 'normal')
# Fit the model
gm_result = basic_gm.____()
Editar e executar o código