Aan de slagGa gratis aan de slag

Setting model hyperparameters

Hyperparameter tuning is a method for fine-tuning the performance of your models. In most cases, the default hyperparameters values of parsnip model objects will not be the optimal values for maximizing model performance.

In this exercise, you will define a decision tree model with hyperparameters for tuning and create a tuning workflow object.

Your decision tree workflow object, loans_dt_wkfl, has been loaded into your session.

Deze oefening maakt deel uit van de cursus

Modeling with tidymodels in R

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Set tuning hyperparameters
dt_tune_model <- decision_tree(___ = ___,
                               ___ = ___,
                               ___ = ___) %>% 
  # Specify engine
  ___ %>% 
  # Specify mode
  ___

dt_tune_model
Code bewerken en uitvoeren