CommencerCommencer gratuitement

PCA analysis

To continue with the quality assessment of our samples, in the first part of this exercise, we will perform PCA to look how our samples cluster and whether our condition of interest corresponds with the principal components explaining the most variation in the data. In the second part, we will answer questions about the PCA plot.

To assess the similarity of the smoc2 samples using PCA, we need to transform the normalized counts then perform the PCA analysis. Assume all libraries have been loaded, the DESeq2 object created, and the size factors have been stored in the DESeq2 object, dds_smoc2.

Cet exercice fait partie du cours

RNA-Seq with Bioconductor in R

Afficher le cours

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Transform the normalized counts 
vsd_smoc2 <- vst(dds_smoc2, blind = TRUE)

# Plot the PCA of PC1 and PC2
___(___, intgroup=___)
Modifier et exécuter le code