A random walk simulation
Stochastic or random movements are used in physics to represent particle and fluid movements, in mathematics to describe fractal behavior, and in finance to describe stock market movements.
Use the np.random.normal() function to model random walk movements of the USO oil ETF with a constant daily average return (mu) and average daily volatility (vol) over the course of T trading days.
Cet exercice fait partie du cours
Introduction to Portfolio Risk Management in Python
Instructions
- Set the number of simulated days (
T) equal to 252, and the initial stock price (S0) equal to 10. - Calculate
Trandom normal values usingnp.random.normal(), passing inmuandvol, andTas parameters, then adding 1 to the values and assign it torand_rets. - Calculate the random walk by multiplying
rand_rets.cumprod()by the initial stock price and assign it toforecasted_values.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Set the simulation parameters
mu = np.mean(StockReturns)
vol = np.std(StockReturns)
T = ____
S0 = ____
# Add one to the random returns
rand_rets = ____ + 1
# Forecasted random walk
forecasted_values = ____
# Plot the random walk
plt.plot(range(0, T), forecasted_values)
plt.show()