Estimation with and without outlier
The data provided in this exercise (hypdata_outlier) has an extreme outlier. A plot is shown of the dataset, and a linear regression model of response versus explanatory. You will remove the outlying point to see how one observation can affect the estimate of the line.
Cet exercice fait partie du cours
Inference for Linear Regression in R
Instructions
- Filter
hypdata_outlierto remove the outlier. - Update the plot,
p, to add another smooth layer (usegeom_smooth).- Like the other ribbon, the update should use the linear regression method, and not draw the ribbon.
- Unlike the other ribbon, the update should use the
data = hypdata_no_outlierand be colored red. - For now, just use the smooth curve, and not the confidence bounds (
se = FALSE).
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# This plot is shown
p <- ggplot(hypdata_outlier, aes(x = explanatory, y = response)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE)
# Filter to remove the outlier
hypdata_no_outlier <- ___
p +
# Add another smooth lin .reg. layer, no ribbon,
# hypdata_no_outlier data, colored red
___