ComenzarEmpieza gratis

Parameter bounds and impact on forecasts

Let's take again the flexible GARCH model specification for which the estimated coefficients are printed in the console. Now assume that you believe that the GARCH parameter \(\alpha\) should be between 0.05 and 0.1, while the \(\beta\) parameter is between 0.8 and 0.95. You are asked here to re-estimate the model by imposing those bounds and see the effect on the volatility forecasts for the next ten days obtained using ugarchforecast.

Este ejercicio forma parte del curso

GARCH Models in R

Ver curso

Instrucciones del ejercicio

  • Impose the c(0.05, 0.2) and c(0.8, 0.95) bounds on alpha1 and beta1.
  • Estimate the bounded model on the EURUSD returns.
  • Note how coefficients have changed.
  • Compare in a table the volatility predictions for the next 10 days using the unrestricted and restricted models.

Ejercicio interactivo práctico

Prueba este ejercicio completando el código de muestra.

# Define bflexgarchspec as the bound constrained version
bflexgarchspec <- flexgarchspec
___(bflexgarchspec) <- list(___ = ___, ___ = ___)

# Estimate the bound constrained model
bflexgarchfit <- ugarchfit(data = EURUSDret, ___ = ___)

# Inspect coefficients
___(___)

# Compare forecasts for the next ten days
cbind(sigma(ugarchforecast(flexgarchfit, n.ahead = ___)),
      sigma(ugarchforecast(bflexgarchfit, n.ahead = ___)))
Editar y ejecutar código