ComeçarComece de graça

Creating custom metric sets

The yardstick package also provides the ability to create custom sets of model metrics. In cases where the cost of obtaining false negative errors is different from the cost of false positive errors, it may be important to examine a specific set of performance metrics.

Instead of calculating accuracy, sensitivity, and specificity separately, you can create your own metric function that calculates all three at the same time.

In this exercise, you will use the results from your logistic regression model, telecom_results, to calculate a custom set of performance metrics. You will also use a confusion matrix to calculate all available binary classification metrics in tidymodelsall at once.

The telecom_results tibble has been loaded into your session.

Este exercício faz parte do curso

Modeling with tidymodels in R

Ver curso

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Create a custom metric function
telecom_metrics <- ___(___, ___, ___)
Editar e executar o código