Scaling II
You'll now apply a scaler to the dataset, which is available for you as environment
.
Remember that Scaling helps the algorithm converge faster, and avoids having one dominant feature heavily influence the outcomes.
Este exercício faz parte do curso
Analyzing IoT Data in Python
Instruções do exercício
- Initialize a
StandardScaler
and store it assc
. - Fit the scaler to
environment
. - Scale
environment
and store the result asenviron_scaled
. - Convert the scaled data back to a DataFrame, using the same columns and index than the original DataFrame.
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# Initialize StandardScaler
sc = ____()
# Fit the scaler
sc.fit(____)
# Transform the data
environ_scaled = ____.____(____)
# Convert scaled data to DataFrame
environ_scaled = pd.DataFrame(____,
columns=____,
index=____)
print(environ_scaled.head())
plot_unscaled_scaled(environment, environ_scaled)