ComeçarComece de graça

Store Pipeline

You'll now create the Pipeline again, but directly, skipping the step of initializing the StandardScaler and LogisticRegression as a variable. Instead, you will do the initialization as part of the Pipeline creation.

You'll then store the model for further use.

The data is available as X_train, with the labels as y_train.

StandardScaler, LogisticRegression and Pipeline have been imported for you.

Este exercício faz parte do curso

Analyzing IoT Data in Python

Ver curso

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Create Pipeline
pl = Pipeline([
        ("scale", ____),
        ("logreg", ____)
    ])

# Fit the pipeline
____.____(____, ____)
Editar e executar o código