Aan de slagGa gratis aan de slag

Regression evaluation

The test_set and model objects that you have derived in the previous exercise are available in your environment.

It's useful to present the accuracy of predictions with one number. You can then easily compare several models and show the progress to your employer or future employer.

Root Mean Squared Error and Mean Absolute Error are widely used to evaluate the regression models. Recall that their formulas are:

\(RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n}(y_i - \hat{y}_i)^2}\)

\(MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|\)

Deze oefening maakt deel uit van de cursus

Practicing Statistics Interview Questions in R

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Assign Hwt from the test set to y
___ <- test_set$___

# Predict Hwt on the test set
___ <- ___(model, newdata = ___)

# Derive the test set's size
___ <- nrow(___)
Code bewerken en uitvoeren