Aan de slagGa gratis aan de slag

Make forecast with GARCH models

Previously you have implemented a basic GARCH(1,1) model with the Python arch package. In this exercise, you will practice making a basic volatility forecast.

You will again use the historical returns of S&P 500 time series. First define and fit a GARCH(1,1) model with all available observations, then call .forecast() to make a prediction. By default it produces a 1-step ahead estimate. You can use horizon = n to specify longer forward periods.

The arch package has been preloaded for you.

Deze oefening maakt deel uit van de cursus

GARCH Models in Python

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Specify a GARCH(1,1) model
basic_gm = ____(sp_data['Return'], p = 1, q = 1, 
                      mean = 'constant', vol = 'GARCH', dist = 'normal')
# Fit the model
gm_result = basic_gm.____()
Code bewerken en uitvoeren