Define, compile, & simulate the regression model
Upon observing the relationship between weight \(Y\)i and height \(X\)i for the 507 subjects \(i\) in the bdims data set, you can update your posterior model of this relationship. To build your posterior, you must combine your insights from the likelihood and priors:
- likelihood: \(Y\)i \(\sim N(m\)i, \(s^2)\) where \(m\)i \(= a + b X\)i
- priors: \(a \sim N(0, 200^2)\), \(b \sim N(1, 0.5^2)\) and \(s \sim Unif(0, 20)\)
In this series of exercises, you'll define, compile, and simulate your Bayesian regression posterior. The bdims data are in your work space.
Latihan ini adalah bagian dari kursus
Bayesian Modeling with RJAGS
Latihan interaktif praktis
Cobalah latihan ini dengan menyelesaikan kode contoh berikut.
# DEFINE the model
weight_model <- ___