Clustered heatmaps
Heatmaps are extremely useful to visualize a correlation matrix, but clustermaps are better. A Clustermap allows to uncover structure in a correlation matrix by producing a hierarchically-clustered heatmap:
df_corr = df.corr()
fig = sns.clustermap(df_corr)
plt.setp(fig.ax_heatmap.xaxis.get_majorticklabels(), rotation=90)
plt.setp(fig.ax_heatmap.yaxis.get_majorticklabels(), rotation=0)
To prevent overlapping of axis labels, you can reference the Axes
from the underlying fig
object and specify the rotation. You can learn about the arguments to the clustermap()
function here.
Este ejercicio forma parte del curso
Visualizing Time Series Data in Python
Instrucciones del ejercicio
- Import
seaborn
assns
. - Compute the correlation between all columns in the
meat
DataFrame using the Pearson method and assign the results to a new variable calledcorr_meat
. - Plot the clustermap of
corr_meat
.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# Import seaborn library
____
# Get correlation matrix of the meat DataFrame
corr_meat = ____(____)
# Customize the heatmap of the corr_meat correlation matrix and rotate the x-axis labels
fig = ____(corr_meat,
row_cluster=True,
col_cluster=True,
figsize=(10, 10))
plt.setp(fig.ax_heatmap.xaxis.get_majorticklabels(), rotation=90)
plt.setp(fig.ax_heatmap.yaxis.get_majorticklabels(), rotation=0)
plt.show()