Comparing model performance profiles
The benefit of the collect_metrics()
function is that it returns a tibble of cross validation results. This makes it easy to calculate custom summary statistics with the dplyr
package.
In this exercise, you will use dplyr
to explore the cross validation results of your decision tree and logistic regression models.
Your cross validation results, loans_dt_rs
and loans_logistic_rs
have been loaded into your session.
Diese Übung ist Teil des Kurses
Modeling with tidymodels in R
Interaktive Übung
Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.
# Detailed cross validation results
dt_rs_results <- ___ %>%
collect_metrics(___)
# Explore model performance for decision tree
dt_rs_results %>%
group_by(___) %>%
summarize(min = ___,
median = ___,
max = ___)