Setting model hyperparameters
Hyperparameter tuning is a method for fine-tuning the performance of your models. In most cases, the default hyperparameters values of parsnip
model objects will not be the optimal values for maximizing model performance.
In this exercise, you will define a decision tree model with hyperparameters for tuning and create a tuning workflow
object.
Your decision tree workflow
object, loans_dt_wkfl
, has been loaded into your session.
Diese Übung ist Teil des Kurses
Modeling with tidymodels in R
Interaktive Übung
Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.
# Set tuning hyperparameters
dt_tune_model <- decision_tree(___ = ___,
___ = ___,
___ = ___) %>%
# Specify engine
___ %>%
# Specify mode
___
dt_tune_model