Adjusting for non-constant errors
In this next example, it appears as though the variance of the response
variable increases as the explanatory
variable increases. Note that the fix in this exercise has the effect of changing both the variability as well as modifying the linearity of the relationship.
Diese Übung ist Teil des Kurses
Inference for Linear Regression in R
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Run this to see how the model looks
ggplot(hypdata_nonequalvar, aes(x = explanatory, y = response)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE)
# Model response vs. explanatory
model <- ___
# Extract observation-level information
modeled_observations <- ___
# See the result
modeled_observations
# Using modeled_observations, plot residuals vs. fitted values
___