Setting model hyperparameters
Hyperparameter tuning is a method for fine-tuning the performance of your models. In most cases, the default hyperparameters values of parsnip model objects will not be the optimal values for maximizing model performance.
In this exercise, you will define a decision tree model with hyperparameters for tuning and create a tuning workflow object.
Your decision tree workflow object, loans_dt_wkfl, has been loaded into your session.
Questo esercizio fa parte del corso
Modeling with tidymodels in R
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Set tuning hyperparameters
dt_tune_model <- decision_tree(___ = ___,
___ = ___,
___ = ___) %>%
# Specify engine
___ %>%
# Specify mode
___
dt_tune_model